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A Novel Financial Hybrid Deep Learning Switching
Model for Cryptocurrency-Driven Investment
Strategies
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Abstract:

Cryptocurrency markets are often plagued by uncertainty and volatility, which are known
challenges for investors and analysts. To mitigate these challenges, a hybrid deep learning
switching model has been developed that integrates LSTM, GRU, GARCH, and Monte Carlo
simulations to improve forecasting accuracy, resilience to market disruptions, and
computational efficiency. The model incorporates historical data from Yahoo Finance (April 1,
2015, to March 31, 2025), normalized for model training on Python 3.0 via Google Colab. The
hybrid model can dynamically switch between different architectures to detect patterns, assess
risks, and provide actionable strategies. This framework proposes a robust framework for
enhancing investment decisions, advancing academic research on financial modeling, and
improving risk management practices in complex cryptocurrency markets.

Keywords: Cryptocurrency forecasting, hybrid deep learning model, Monte Carlo simulation,
volatility prediction, risk management strategies

1. Introduction

1.1. About Cryptocurrencies

Bitcoin first appeared in January 2009, created by a computer programmer using the
pseudonym Satoshi Nakamoto. Craig K. Elwell (2013) discussed his invention as an open-
source system (its controlling computer code is publicly viewable), peer-to-peer
(transactions do not require a third-party intermediary, such as PayPal or Visa), and digital
currency (being electronic with no physical manifestation). The Bitcoin system is private, but
with no traditional financial institutions involved in transactions. Unlike earlier digital
currencies that had some central controlling person or entity, the Bitcoin network is
completely decentralized, with all parts of transactions performed by the users of the system.
Brito and Castillo (2013) highlight the issues of apprehension for policy-makers, consumers,
and regulators and discuss the benefits of the Bitcoin network, its properties, and operation.
It also emphasizes the current regulatory aspect and the potential regulatory framework for
Bitcoins. The revolutionary invention of Bitcoin succeeded in solving the problem of double
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spending without the interference of a third party. Usage of Bitcoins helps mitigate the
transaction cost and is faster than the traditional avenues of payment. Access to financial
services in developing countries can be augmented by using Bitcoin. It has the potential to
improve the quality of life of poor people in countries with strict capital control. Apart from
the benefits it provides, Bitcoin poses some threats to its potential users, including
fluctuations in value, security concerns, and money laundering for financing the illegal
trafficking of goods. Considering the regulatory aspect of Bitcoins, there is a huge ambiguity
regarding the application of law because it does not fit into the existing statutory definition.
Existing law and directives do not envisage technology like Bitcoin. Bitcoin, being an
electronic payment system, is likely to be scrutinized by different regulators who may
confront questions like the legality of online currency, licensing of money transmission,
consideration of Bitcoins as currency or commodities, etc. The paper concludes with some
suggestions for policy-makers to minimize the negative results. Yermack (2013) established
the legitimacy of Bitcoins as a currency. The author disagrees that the bitcoins can be
established as a bona fide currency; rather, they behave more like speculative instruments.
The classical properties of a typical currency are:

e [tacts as a medium of exchange,

e [tacts as a unit of account, and

e Itactsas astore of value.

Bitcoins appear to satisfy the first criterion, as an increasing number of online merchants
have accepted them as a medium of payment; however, they fail to meet the other two
criteria. The exchange rate volatility of Bitcoins is higher compared to the fluctuations in
other currencies and reveals zero correlation with other currencies, which undermines its
use as a unit of account and store of value. The market volatility of Bitcoins in 2013 was 133%,
which is significantly higher than the volatility of other currencies, which typically falls
between 8% and 12%. Gold exhibits a volatility of 22%, and even the riskiest stocks exhibit a
volatility of 100%, which makes Bitcoin incompatible and risky for investors. Moreover, all
the multinational companies that deal in multiple currencies endeavour to hedge themselves
against the risk arising from the fluctuations of currencies. However, having a zero
correlation with other currencies renders Bitcoins useless for risk management purposes.
Ethereum has evolved as an alternative to Bitcoin among others in the cryptocurrency
ecosystem, owing to its decentralized platform for smart contracts and decentralized
applications (dApps). The valuation of Ethereum (ETH) is impacted by a convergence of
technical, economic, and speculative elements that distinguish it from other cryptocurrencies
like Bitcoin.

Buterin (2013) presented Ethereum as a decentralized platform that transcends basic
peer-to-peer cash transactions, allowing developers to construct programmable apps on the
blockchain. This essential distinction has drawn a wider array of developers, investors, and
organizations to Ethereum in contrast to Bitcoin. FLOW cryptocurrency was created by
Dapper Labs, the firm responsible for the renowned Ethereum-based decentralized
application, CryptoKitties. Launched in 2017, CryptoKitties illustrated the promise of
blockchain-based digital assets while also revealing scalability challenges on Ethereum,
especially during times of elevated user engagement. This resulted in network congestion
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and elevated transaction costs, indicating that Ethereum’s infrastructure was challenged by
the volume (Buterin, 2020). Dapper Labs developed Flow, a blockchain designed to address
scalability challenges and enhance performance for gaming, decentralized apps (dApps), and
non-fungible tokens (NFTs) (Dapper Labs, 2020). Originally the native cryptocurrency of the
Ripple network, XRP is mainly aimed at providing remittance systems, currency exchange,
and real-time gross settlement (Coutinho et. al, 2023). Ripple’s consensus algorithm,
commonly known as the Ripple Protocol Consensus Algorithm (RPCA), is based on the Ripple
Protocol Consensus Algorithm (RPCA). It enables faster transaction speeds and lower energy
use (Schwartz et al,, 2014). The Ripple network is more centralized than other distributed
networks, as it requires a group of trustworthy validators to verify transactions (Hileman &
Rauchs, 2017). Many financial institutions have also shown deep interest in this
cryptocurrency due to its position as a bridge between fiat and other cryptocurrencies that
facilitate cross-border payments (Davradakis, 2019).

1.2. Cryptocurrency Forecasting

Investments in Cryptocurrency have often seemed lucrative, but with a high probability of
risk and uncertainty. Uncertainty dimensions such as unpredictability and dynamicity are
seen as significant challenges for investors, financial analysts and policy-makers. The
unpredictable and dynamic nature of cryptocurrency markets poses significant challenges
for investors and financial analysts. Historically, traditional forecasting models have often
struggled against these challenges due to rapid price fluctuations, rapidly shifting market
dynamics, non-linear dependencies, and other common factors in digital asset trading. The
emergence of deep learning tools in navigating these hidden layers of dependencies has led
to better outcomes in terms of improved prediction accuracy and enhanced investment
strategies. Researchers have often experimented by combining such deep learning tools to
develop high-performing hybrid models aimed at reducing errors in price predictions and
other similar domains. In short, a hybrid deep learning switching model offers a significantly
improved strategy for adapting to market dynamics through the combination of multiple
neural network architectures. Strengths of existing methods, such as Long Short-Term
Memory (LSTM) networks for sequential data analysis, Gated Recurrent Units (GRUs) for
efficient computation, Monte Carlo methods and Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) models for volatility forecasting and risk assessments, can be
suitably shaped and converged into a hybrid deep learning switching model.

The model is orchestrated to dynamically switch between alternative architectures to
identify patterns, adapt to market volatility, and suggest financially implementable
responsive alternatives for achieving financial goals. The integration of deep learning models,
such as LSTM and GRU, with Monte Carlo simulation can create a suitable niche that
incorporates dynamic stochastic elements relevant to cryptocurrency market behaviour.
Consequently, this model serves as a penchant driving robustness and scalability that can
transform traditional financial strategies into efficient cryptocurrency-driven investment
strategies for improved decision-making in very complex cryptocurrency financial
environments.
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1.3. Definition

e LSTM (Long Short-Term Memory): A type of recurrent neural network (RNN)
designed to capture long-term dependencies in sequential data using memory cells
that regulate information flow (Hochreiter & Schmidhuber, 1997).

e GRU (Gated Recurrent Unit): A variant of RNN that simplifies LSTM by combining its
cell state and hidden state into a single structure, reducing complexity while
maintaining performance (Cho et al,, 2014).

e Monte Carlo Simulation: A computational technique that uses random sampling to
estimate probabilities, model uncertainty, and generate potential outcomes in
stochastic processes (Metropolis & Ulam, 1949).

e GARCH (Generalized Autoregressive Conditional Heteroskedasticity): A statistical
model designed to predict financial volatility by modeling time-varying variance in
financial data, often capturing volatility clustering and leverage effects (Bollerslev,
1986).

2. Literature Review

2.1. LSTM Architecture

For a long time, Long Short-Term Memory (LSTM) networks and their hybrid variants have
mainly focused on complex forecasting and prediction tasks across multiple domains. Studies
by Sunny et al. (2020) and Wang et al. (2018) indicated the efficiency of two LSTM models,
Bidirectional LSTM (Bi-LSTM) and optimized LSTM, in capturing sophisticated temporal
dependencies and improving stock price prediction accuracy. LSTM networks, such as the
CEEMDAN-LSTM model, can handle volatile financial data by controlling noise reduction and
pattern extraction techniques to enhance stock index forecasting. The CEEMDAN-LSTM
model can control noise reduction and pattern extraction techniques to enhance stock index
forecasting, demonstrating the adaptability of LSTM networks in handling volatile financial
data (Lin et al., 2021). These developments highlight the utility of LSTM models to generate
precise and reliable predictions, enabling investors, analysts and policy-makers.

Researchers also highlighted the combination of LSTM models with Convolutional Neural
Networks (CNNs) and Autoregressive Integrated Moving Average (ARIMA) models, effectively
combining spatial feature extraction with temporal dependency modelling, tackling the
complexities of energy resource management forecasting accuracy in well production and gas
fields (Zhaetal.,, 2022, and Fanetal., 2021). Xu etal. (2022) proposed an ARIMA-LSTM hybrid,
where linear and non-linear modelling experiments demonstrated the versatility of LSTM
networks in addressing critical challenges in energy and environmental sectors, thus
assisting as robust tools for resource planning and decision-making. In addition, LSTM
networks showcased their flexibility in diverse data types and domains, particularly for
natural language processing (NLP), sentiment analysis, and trajectory prediction. Dynamic
environment analysis included an SS-LSTM model dealing with social and spatial
dependencies for pedestrian trajectory prediction (Xue et al., 2018).

For sentiment analysis, Wang et al. (2016) and Behera et al. (2021) employed CNN-LSTM
hybrids to capture both spatial and temporal sentiment cues, thereby evaluating the
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effectiveness of improving performance in fine-grained sentiment classification tasks. CNN-
LSTM models have also been observed to handle complex linguistic structures for metaphor
detection (Wu et al., 2018). A comprehensive study by Al-Selwi et al. (2024) described the
boundaries of deep learning coverage, which extends to autonomous driving, social media
analysis, and NLP, offering attention mechanisms and genetic optimization that address
innovative solutions to real-world challenges.

2.2. GRU Architecture

Domain studies related to time series analysis and market forecasting have achieved
considerable success owing to models with Gated Recurrent Unit (GRU) based architecture.
Notably, an optimized architecture, based on stacked bidirectional and LSTM and GRU
models, has improved prediction accuracy, as indicated by the results from the work of
Althelaya et al. (2018) and Gao et al. (2021). Multi-dimensional sequential pattern detection
with higher precision was observed in GRU-based StockNet and CNN-LSTM, two new hybrid
models, as indicated by the results from studies by Gupta et al. (2022) and Song and Choi
(2023), respectively. Decomposition-based GRU Transformer model generated higher
forecasting accuracy by effective isolation of key patterns in financial data (Li & Qian, 2022).
Variational Mode Decomposition (VMD) with an Attention-enhanced GRU network, a model
created by Niu and Xu (2020), was able to capture both short-term fluctuations and long-
term trends in stock price data. Niu and Xu (2020) introduced a hybrid model combining
Variational Mode Decomposition (VMD) with an Attention-enhanced GRU network,
demonstrating its ability to capture both short-term fluctuations and long-term trends in
stock price data. Likewise, studies by Saha et al. (2021) and Zhang et al. (2023) indicate the
complementary strengths of linear and non-linear modelling approaches for stock price and
oil price forecasting, with the integration of ARIMA models with GRU models. Advancements
in quality, as well as complementary GRU models, showcase higher precision and reliability
in the delivery and application of deep learning approaches to financial forecasting.

Beyond stock market prediction, GRU models witnessed more applications that included
pandemic trend forecasting and sentiment analysis. Another examination of the multiple
model performances of GRU, LSTM, ARIMA, and SARIMA models in predicting COVID-19
trends highlighted the efficacy of deep learning models in capturing non-linear patterns
(ArunKumar et al., 2022). A CNN-GRU hybrid model was proposed by Wu et al. (2024) to
capture market sentiments, risk predictions and efficient alert systems in financial modelling.
Furthermore, deep learning models were tested on grouped time-series data and revealed
higher forecasting accuracy in financial markets (Lawi et al., 2022; Pirani et al, 2022).
Therefore, studies on GRU-adapted models have proven to be efficient, thereby offering
significant insights into adaptability and applicability in dynamic environments and cross-
domain studies, respectively.

2.3. Monte Carlo Simulation

Historically, Monte Carlo simulation has been considered a powerful tool for risk assessment,
forecasting and decision-making across diverse areas, including financial markets. Two
studies, by Alrabadi and Aljarayesh (2015) and Estember and Marafia (2016), respectively,
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pointed to the efficiency of Monte Carlo simulations not only in modelling the stochastic
nature of stock prices but also in apprehending market volatility and providing probabilistic
forecasts of future returns. Multiple potential outcomes with risk assessments in dynamic
financial environments stand out as the predominant characteristics of Monte Carlo methods
(Xiang et al,, 2021 and Siddiaui and PPatil, 2018). Together, these works illustrate the basic
role of Monte Carlo simulation in improving forecasting accuracy and supporting strategic
decision-making in finance.

Beyond financial applications, Monte Carlo methods have been applied in traffic
forecasting and emerging market analysis. Variable factors like peak hours and weather
conditions for urban planning and traffic management were simulated with useful results to
predict traffic speeds using Monte Carlo methods (Jeon & Hong, 2016). The mean-reverting
behaviour of emerging MENA stock markets was also investigated using a Monte Carlo
Simulation to draw insights for market stability and predictability (Neaime, 2015). Modelling
complex, stochastic systems to generate probabilistic forecasts makes it a highly useful tool
for addressing uncertainties in both financial areas. In the same context, stochastic volatility
modelling and mean-field simulation were investigated to emphasize the versatility of
advanced Monte Carlo techniques in capturing dynamic patterns and high-dimensional
distributions (Raggi and Bordignon, 2006 and Del Moral, 2013).

Comprehensive works on theoretical and practical advancements in Monte Carlo
simulation, such as Mun (2006, 2010), McLeish (2011), and Brandimarte (2014), provide
detailed frameworks for applications in financial engineering, risk management, and
economic modelling. These studies are indicative of method applications, real options
analysis, portfolio optimization, and ensemble machine learning models, as demonstrated by
Deep (2024) and Mun and Housel (2010) integration of Monte Carlo simulation with other
advanced methods. On the other hand, challenges such as its reliance on distributional
assumptions and sensitivity to input parameters underline the need for careful validation and
implementation (Nawrocki, 2001). Notwithstanding these challenges, the literature
highlights the true potential of Monte Carlo simulation in addressing complex, uncertain
systems, offering adaptable tools for forecasting, risk assessment, and strategic decision-
making across various applications for investors and analysts.

2.4. GARCH Model

GARCH (Generalized Autoregressive Conditional Heteroskedasticity) models are well-known
for forecasting stock market volatility, for capturing volatility clustering, leverage effects, and
asymmetric market behaviours. The effectiveness of variants of GARCH models, such as Non-
linear variants like EGARCH and GJR-GARCH, was demonstrated for sudden market shocks
and asymmetric patterns and performed well beyond expectations in comparison to their
linear counterparts in capturing the dynamic nature of financial markets (Franses & Van Dijk,
1996; Chong et al.,, 1999). Similarly, Marcucci (2005) presented regime-switching GARCH
models that adapt to structural changes in market conditions, enhancing forecasting for risk
management, portfolio optimization, and financial decision-making. Diverse market
conditions in both developed and emerging markets were studied using adaptable GARCH
models. Shanghai Stock Exchange (SSE) and Bombay Stock Exchange (BSE), respectively,
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were investigated using EGARCH and TGARCH for capturing volatility dynamics (Lin, 2018;
Srinivasan & Ibrahim, 2010). In extension, emerging markets, such as Ghana and Turkey,
were effectively explored using non-linear GARCH models to address the unique volatility
patterns and leverage outcomes prevalent in such regions (Gokcan, 2000; Frimpong & Oteng-
Abayie, 2006).

Furthermore, the realized GARCH model explored high-frequency data to enhance
forecasting accuracy, in addition to the existing innovations in GARCH methodologies.
Focusing on hybrid approaches and integration with machine learning techniques has
constituted recent advancements in GARCH modelling (Sharma, 2016). The strengths of
GARCH with Long Short-Term Memory (LSTM) networks were utilized for predicting stock
price index volatility, by combined hybrid model (Kim & Won, 2018). Another hybrid model
by Monfared and Enke (2014), GJR-GARCH with neural networks, highlighted the efficacy in
capturing non-linear patterns, resulting in improved volatility forecasts. Similarly, work by
Babu and Reddy (2015) and Laurent et al. (2012) further expanded the scope of GARCH
applications, combining with ARIMA and multivariate frameworks, respectively, to address
linear trends and dynamic correlation structures. Such novel studies together underline the
prospects of hybrid GARCH models and their evolving contribution in financial forecasting,
contributing robust tools for risk assessment, investment strategies, and decision-making in
progressively multifaceted and interrelated markets. Alternatively, these studies also
highlight the importance of modifying GARCH models to account for specific market
characteristics, providing valuable insights for investors and policy-makers navigating
volatile and rapidly changing financial environments.

While LSTM, GRU, Monte Carlo simulation, and GARCH models have shown considerable
promise in forecasting and risk assessment, several gaps remain. LSTM and GRU models lack
sufficient research on interpretability, scalability, and performance under extreme events.
Monte Carlo methods face challenges in computational efficiency and integration with
machine learning techniques. GARCH models require further exploration in multi-asset
forecasting, non-financial domains, and real-time applications. Addressing these gaps
through hybrid models can improve accuracy, robustness, and applicability across diverse
markets and conditions.

The study intends to achieve objectives such as:

e To develop a hybrid forecasting model integrating LSTM, GRU, Monte Carlo
simulation, and GARCH models for improved predictive accuracy.

e To evaluate the computational efficiency and scalability of the hybrid model for high-
frequency trading and dynamic risk management.

e To enhance model interpretability through explainable Al techniques for regulatory
and risk management purposes.

e To test the hybrid model’s adaptability in emerging markets, extreme financial
conditions, and non-financial domains.

Related hypotheses of the study include:

e H11: The hybrid LSTM-GRU-Monte Carlo-GARCH model will outperform individual
models in forecasting accuracy.
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e H12: The hybrid model will demonstrate improved robustness to structural breaks
and extreme market events compared to traditional models.

e H13: The hybrid model will exhibit superior computational efficiency in real-time
forecasting scenarios.

e H14: The hybrid model’s explainability features will enhance stakeholder confidence
and improve adoption in regulated industries.

3. Research Methods
The historical data was collected from Yfinance between the range of 01-04-2015 and 31-03-
2025 (3634 days) using Python 3.0 on the Google Colab platform. The data was normalized
for better LSTM, GRU, Monte Carlo Simulation and GARCH model training and forecasting.
The process of developing a robust stock price forecasting system involves several key
steps. First, data preparation is essential, where historical stock price data is collected using
the Yfinance library. The raw data was normalized and first-order differencing produced
differences in normalized data for model-based analysis. To enhance the performance of the
Long Short-Term Memory (LSTM) model, the data is normalized to ensure stable learning. In
the next step, an LSTM model is designed to predict future stock prices, and this model is
trained using the prepared historical data. Following this, a Monte Carlo simulation is
employed to generate multiple possible future price paths by introducing randomness into
the LSTM model’s predictions through noise injection, which accounts for uncertainty. Lastly,
in the visualization and analysis phase, the predicted price paths are plotted, and key financial
metrics such as the mean, percentiles, and Value at Risk (VaR) are calculated to assess the
model’s performance and risk implications. This structured approach combines deep
learning with stochastic modelling to improve the accuracy and reliability of financial
forecasting.

4. Data Analysis & Findings

4.1. Normalization and Differencing

Initial tests after normalization of data resulted in Ljung-Box Test (for Autocorrelation) =
35683.672463. After first order differencing, the new differenced series became stationary
with ADF Statistic: -8.757488, p-value (0.00 < 0.05) with no unit root and stable mean
variance.



4.2. Descriptive Statistics

BTC Close High Low Open Volume Normalized and
Differencing of
First Order
count 3634 3634 3634 3634 3634 3633
mean | 22114.12 | 22584.33 | 21573.24 | 22092.63 | 2.02E+10 0.0002167
std 24377.56 | 24880.17 | 23806.44 | 24360.97 | 2.09E+10 0.009687
min 210.495 | 223.833 | 199.567 | 210.068 | 10600900 -0.0772419
25% | 3653.855 | 3699.571 | 3609.562 | 3650.94 | 2.04E+09 -0.0012735
50% | 10324.91 | 10508.12 | 10082.45 | 10321.69 | 1.66E+10 1.75E-05
75% | 35997.64 | 37244.26 | 34756.07 | 35894.92 | 3.12E+10 0.0016254
max | 106146.3 | 109114.9 | 105291.7 | 106147.3 | 3.51E+11 0.0776631

The table for descriptive statistics (Table 1) indicates that Bitcoin’s historical price and
volume statistics reveal significant volatility, with 3,634 observations, an average closing
price of approximately $22,114, and a wide standard deviation of $24,378, demonstrating
substantial price fluctuations. The range of closing price fluctuations varied between $210.50
and a dramatic rise to $106,146, with a central tendency of median closing price at $10,324,
with signs of Bitcoin’s growth occurring in the latter part of the dataset. The signs of growth
were further strengthened by the 25th percentile value at $3,654 and the 75th percentile
value at $35,998. Average volumes of $20.2 billion spiked to $351 billion, highlighting periods
of Intensive market activity. Considering the speculative nature of Bitcoin investments and
the sharp fluctuations in market swings, the data is deemed suitable for advanced volatility
modelling techniques, such as GARCH or Monte Carlo simulations, for risk assessment. For
Normalized and differencing of first order, the bounded range for Values fall between +0.077,

Table 1: Descriptive Statistics for Raw BTC Data
Source: Author’s

implying stable transformations for modeling (See Figure 1).

Comparisen of Original, Differenced, and Normalized Data

:::::

\\\\\

Figure 1: Comparative Chart for Original and Normalized Data on BTC Data
Source: Author’s
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4.3. GRU Results
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Figure 2: GRU Results on BTC Data
Source: Author’s

The provided visualizations illustrate the performance and predictive behaviour of a GRU
model for Bitcoin price forecasting. Both training and prediction performance of the GRU
model are demonstrated through two plots, while the left panel indicates training loss over
100 epochs, with low magnitude loss (~6.0e-5), and noticeable fluctuations suggesting the
model’s fitness for training data with limited convergence stability. Likewise, the right panel
depicts a comparison between predicted values (orange line) and actual differenced values
(blue line) for a selected feature. This is indicative of the difficulty of the GRU model to capture
dynamic patterns due to underfitting or inadequate learning of sequential dependencies,
thereby implying non-generalization capability on volatile time series (See Figure 2).

4.4. LSTM Results
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Figure 3: LSTM Results on BTC Data
Source: Author’s

A Deep learning model, the LSTM model, was trained on BTC data to identify both stochastic
and deterministic projections. The performance of the LSTM model is assessed using training
loss and prediction accuracy visualizations (See Figure 3). A reasonably stable and effective
fitting process is indicated by the model’s training loss over 100 epochs, showing consistently
low values (~6.0e-5) and moderate oscillations (left panel). On the contrary, the LSTM’s
predicted differenced values (orange line) with the actual differenced series (blue line)
capture the mean level of the series, ignoring the amplitude and directional shifts of the actual
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data during peak volatility times (right panel). This implies that LSTM can learn the central
tendency of the data but may not capture the temporal dynamics and sharp fluctuations,
thereby limiting its effectiveness in high-variance forecasting contexts. In the later stage, the
GARCH model was integrated to study volatility dynamics (See Figure 3).

4.5. Monte Carlo Simulation Results

Simulation of Differenced Data (Feature 1) ) i Distribution of Final Simulated Differenced Values (Feature 1)
s

Figure 4: Monte Carlo Results on BTC Data
Source: Author’s

Simulated future price paths were achieved across a 30-day horizon using Monte Carlo
simulation, with the red dashed line at $50,000 representing the initial base price or
reference point. The Monte Carlo simulation results for the differenced time series data of
Feature 1 are depicted through the ensemble forecast and distribution plots.

Multiple simulated paths, including the mean forecast trajectory across 100 steps (red
line), indicate a gradual mean upward drift, indicating a slight positive expectation for the
differenced values over time. The increase in dispersion of the simulated paths with forecast
horizons highlights growing uncertainty (left panel). The final simulated difference values
distribution is moderately skewed, representing a unimodal, near-normal shape centred
around zero, indicating a non-trivial probability of extreme values, emphasizing the
stochastic nature of future projections and the significance of including probabilistic
forecasting in high-volatility time series analysis (See figure 4).

4.6. GARCH Model Results

(GARCHIL1) Forecast vs Hstorical Data (Close) ‘GARCH(1,1) Conditional Volatility Forecast

Figure 5: GARCH Model on BTC Data
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Source: Author’s

The GARCH model visualization for Bitcoin’s volatility forecast presents a simulated
BTC price series with approximately 500 data points before the forecast initiation. The
GARCH (1,1) forecasting results presented offer insights into both the expected value and
conditional variance of the differenced financial time series data. The GARCH model
visualization for Bitcoin’s volatility forecast presents a simulated BTC price series with
approximately 500 data points before the forecast initiation. The GARCH (1,1) forecast
results presented offer insights into both the expected value and conditional variance of the
differenced financial time series data. The left panel shows the past-differenced values along
with the GARCH model’s predicted average, including a 95% confidence range. This suggests
that the model expects the average to stay mostly stable in the future, although the
uncertainty increases over time. The right panel suggests a model expectancy for market
stability, with less expected large-scale changes, as indicated by steadily decreasing
forecasted volatility. These results highlight the effectiveness of the GARCH model in
capturing dynamic volatility, forecasting better results with different confidence levels,
which is significant for financial risk management (See Figure 5).

5. Interpretation

5.1. Inferences

Model Key Results Inferences Limitations
GRU - Training loss: ~6.0e-5 (low but - Captures basic patterns but - Poor generalization on
fluctuating). struggles with dynamic volatility. volatile data.
- Predictions are static, failing to - Potential underfitting or - Limited directional
track actual volatility. inadequate sequential learning. accuracy.
LSTM - Training loss: ~6.0e-5 (stable). - Learns central tendency but not - Underrepresents high-
extreme fluctuations. variance periods.
- Predictions matches mean but - Better stability than GRU. - Limited volatility
miss amplitude/directional forecasting.
shifts.
Monte - 30-day horizon simulations - Suggests positive drift but high - Assumes normality;
Carlo show upward drift with uncertainty. may underestimate tail
Simulation increasing dispersion. risks.
- Final distribution: near- - Probabilistic forecasts account for - Sensitive to input
normal, centered at zero. extreme outcomes. parameters.
GARCH - Narrow forecast band (stable - Captures volatility clustering.
(1,1 mean).
- Declining conditional volatility - Effective for risk-sensitive
trend. forecasts.

Table 2: Interpretation of Results
Source: Author’s

The GRU model achieves a low training loss (~6.0e-5). However, its static prediction
behaviour suggests an inability to capture underlying dependencies in volatility patterns—
possibly due to underfitting or limited learning capacity—especially when compared to the
LSTM model, which better captures central tendencies. The LSTM model can be considered
an apt model for training stability and comparable loss control during the training phase,
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provided its inability to estimate extreme variations can be minimized. Complementing these
models, the Monte Carlo simulation delivers a probabilistic outlook, presenting a positive
drift and widening uncertainty over time; however, its reliance on normality assumptions
may understate tail risk. On the contrary, results of the GARCH (1,1) model suggest enhanced
ability for forecasting volatility on account of stable mean predictions and volatility clustering
achieved through declining conditional variance forecast. Nevertheless, its symmetric
response to volatility shocks and limited capacity for modelling mean dynamics expose the
trade-off between interpretability and adaptability. These observations collectively suggest
the value of hybrid frameworks that integrate the pattern-recognition strengths of deep
learning with the robust statistical foundations of GARCH models to enhance forecasting
accuracy in non-stationary and high-volatility financial environments (See Table 2).

5.2. Structural Equation Model

Decline from 75,000 to 50,000

LSTM Model

2
¥ 2
Volatility Patterns

¥
Risk Assessment

Mean stabilizes near 50,000

Decline from 100,000 to 50,000

GRU Model

Volatility: 38,000 to 62,000

GARCH Model

‘ Monte Carlo Simulation

Figure 6: Structure Equation Modeling for BTC
Source: Author’s
Tool used: SEM diagram, https://semdiag.psychstat.org/, Mai, Yet. AL, 2023)

5.2.1. Latent Variables

Influenced by both the GRU Model and LSTM Model (rectangle node), representing projected
price patterns in response to past data trends. The GARCH Model (rectangle node) indicates
expected volatility fluctuations. The Monte Carlo Simulation (rectangle node) played a crucial
role in influencing volatility patterns and risk assessment, ultimately leading to potential
market outcomes (See Figure 6).

5.2.2. Price Trends

Price trends (oval node) were demonstrated using the GRU Model and the LSTM models. The
GRU model indicated a price decline from 100,000 to 50,000. The GRU model predicts a
substantial drop in BTC prices over the forecast period. The GRU model depicts complex price

patterns with some restrictions on overfitting historical data. On the contrary, the LSTM
model predicts a price decline from 75,000 to 50,000. This exhibits a much smoother forecast
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pattern, revealing that the LSTM model effectively describes time-based dependencies with
unexpected volatility (See Figure 6).

5.2.3. Volatility Patterns

The missing volatility patterns (oval node) in the price trends were identified using the
GARCH model (rectangle node). The GARCH model highlights price volatility in the range of $
38,000 to $ 62,000. This showcased the model's strength in not only discovering volatility
clusters but also enabling smooth price fluctuations (See Figure 6).

5.2.4. Risk Assessment

Risk metrics, such as the Sharpe Ratio and Maximum Drawdown, were used to simulate noise
in the existing Model, and stabilization was identified at nearly $50,000. This simulation
effectively models realistic market noise, making it valuable for evaluating risk factors (See
Figure 6).

5.2.5. Combined Impact

Substantial market corrections were indicated, as both GRU and LSTM models showed
significant price declines. Volatile market conditions, characterized by price swings within
the range of 38,000 and 62,000, as indicated by the GARCH Model, are highlighted by
stabilization around 50,000, as shown by the Monte Carlo simulation. Merging the GARCH
Model and Monte Carlo Simulation provides an overview of volatility risks and BTC price
trends within realistic market scenarios, thereby enhancing the robustness of investment
decisions and risk management strategies (See Figure 6).

6. Discussion
The proposed model structure equation model (Figure 4) reasserts the response of different
models with respect to price trends, volatility patterns, and risk assessment, supporting the
hypotheses in numerous ways:

e H11: Improved Forecasting Accuracy
LSTM model and GRU model clearly exhibit similar trends in price decline from (75,000 to
50,000) and (100,000 to 50,000), respectively. The GARCH Model effectively detects volatility
patterns (38,000 to 62,000), indicating its ability to capture complex fluctuations. Monte
Carlo Simulation stabilizes the mean near 50,000, ensuring consistency in forecasts.
Therefore, the combination of these models utilizes their individual strengths, enhancing the
hybrid model's predictive accuracy by merging not only temporal dependencies, but also
volatility clustering, and probabilistic estimations.

e H12: Robustness to Structural Breaks and Extreme Market Events
A diversified approach of a hybrid model assisted in dealing with different aspects of financial
data (e.g., price trends, volatility patterns, and risk assessment), which were dealt with by
different models. This model proves to be robust in accommodating unexpected market shifts
and extreme market situations. Monte Carlo Simulation in the hybrid model can handle
uncertainty and randomness. (Figure 4)

e H13: Superior Computational Efficiency



31

Redundant computations are easily handled by the contributions of different models,
enabling switching between models more easily, depending on data behaviour, and further
ensuring efficient resource utilization in real-time forecasting.
e H14: Enhanced Explainability for Stakeholder Confidence

Price Trends, Volatility Patterns, and Risk Assessments are based on insights from the
contributing models that underline transparent and interpretable outcomes. In high-risk
financial scenarios, dependency on strong logical predictions can be attributed to the well-
designed framework of this hybrid model.

7. Conclusion

The proposed hypothesis (H14) is robustly validated by the experiment utilizing BTC data
through a hybrid model configuration (LSTM, GRU, GARCH, and Monte Carlo simulations),
highlighting superior accuracy, resilience, increased efficiency, and greater explainability
achieved for diverse marketing situations. Possible insights from the findings and discussion
lead to the conclusion that the development of robust risk management strategies, involving
forecast market corrections with volatility models, enhances informed decision-making
across sectors.

The experiment using BTC data via a hybrid model configuration (LSTM, GRU, GARCH,
and Monte Carlo simulations) strongly validates the proposed hypothesis (H4), thereby
demonstrating better accuracy, resilience, higher efficiency, and increased explainability in
various possible marketing scenarios. Possible insights from the results and debate point to
the conclusion that the evolution of strong risk management techniques involves predictable
market corrections, with improved volatility models enhancing informed decision-making
across industries.

7.1. Implications of the Results

7.1.1. Economic Implications

Insights from the research can assist investors, regulators, and policymakers in potential
crypto market corrections where speculative bubbles might often lead to price crashes.
Although Cryptocurrency (BTC) can be treated as a potential hedge to mitigate inflationary
effects in some economies, sudden devaluation risks can exist in the form of existing volatility
(ranging from $38,000 to $62,000). Central banks in growing economies can incorporate such
digital assets in their monetary policies. The findings highlight Bitcoin's potential role in
portfolio diversification, thereby facilitating institutional investors to achieve risk-adjusted

returns.

7.1.2. Business Implications
Financial Institutions can not only design new hedging strategies but also improve exposure

control by leveraging collective insights drawn from the GARCH model and Monte Carlo
simulation on BTC data. BTC-backed financial instruments or investment strategies can be
constructed based on stabilization trends around $50,000, as observed and highlighted by
$50,000 shown in the Monte Carlo simulation. Businesses employing automated trading
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systems can use volatility insights to enhance algorithms, improving timing strategies for
entry and exit points during high-risk periods. Growing trends indicate that to reduce the risk
of revenue loss, future BTC payments may factor in predicted volatility patterns to adapt
pricing strategies.

7.1.3. Social Implications

The identified sharp price fluctuations may discourage retail investors, especially those
driven by speculative motives. Improved risk assessment models can help improve
confidence in BTC investments. Higher speculative interests among potential investors may
be generated by accommodating improved risk assessment models. Concerns about wealth
inequality persist, as extreme volatility may disproportionately impact small-scale investors
compared to institutional players in the crypto market. Safer market conditions can lead to
stricter guidelines for BTC-related financial products, resulting from the clear identification
of volatility risks prompted by the combination of GARCH and Monte Carlo models.
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