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Abstract: 

Cryptocurrency markets are often plagued by uncertainty and volatility, which are known 

challenges for investors and analysts. To mitigate these challenges, a hybrid deep learning 

switching model has been developed that integrates LSTM, GRU, GARCH, and Monte Carlo 

simulations to improve forecasting accuracy, resilience to market disruptions, and 

computational efficiency. The model incorporates historical data from Yahoo Finance (April 1, 

2015, to March 31, 2025), normalized for model training on Python 3.0 via Google Colab. The 

hybrid model can dynamically switch between different architectures to detect patterns, assess 

risks, and provide actionable strategies. This framework proposes a robust framework for 

enhancing investment decisions, advancing academic research on financial modeling, and 

improving risk management practices in complex cryptocurrency markets. 

 

Keywords: Cryptocurrency forecasting, hybrid deep learning model, Monte Carlo simulation, 
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1. Introduction 

 

1.1. About Cryptocurrencies 

Bitcoin first appeared in January 2009, created by a computer programmer using the 

pseudonym Satoshi Nakamoto. Craig K. Elwell (2013) discussed his invention as an open-

source system (its controlling computer code is publicly viewable), peer-to-peer 

(transactions do not require a third-party intermediary, such as PayPal or Visa), and digital 

currency (being electronic with no physical manifestation). The Bitcoin system is private, but 

with no traditional financial institutions involved in transactions. Unlike earlier digital 

currencies that had some central controlling person or entity, the Bitcoin network is 

completely decentralized, with all parts of transactions performed by the users of the system. 

Brito and Castillo (2013) highlight the issues of apprehension for policy-makers, consumers, 

and regulators and discuss the benefits of the Bitcoin network, its properties, and operation. 

It also emphasizes the current regulatory aspect and the potential regulatory framework for 

Bitcoins. The revolutionary invention of Bitcoin succeeded in solving the problem of double 
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spending without the interference of a third party. Usage of Bitcoins helps mitigate the 

transaction cost and is faster than the traditional avenues of payment. Access to financial 

services in developing countries can be augmented by using Bitcoin. It has the potential to 

improve the quality of life of poor people in countries with strict capital control. Apart from 

the benefits it provides, Bitcoin poses some threats to its potential users, including 

fluctuations in value, security concerns, and money laundering for financing the illegal 

trafficking of goods. Considering the regulatory aspect of Bitcoins, there is a huge ambiguity 

regarding the application of law because it does not fit into the existing statutory definition. 

Existing law and directives do not envisage technology like Bitcoin. Bitcoin, being an 

electronic payment system, is likely to be scrutinized by different regulators who may 

confront questions like the legality of online currency, licensing of money transmission, 

consideration of Bitcoins as currency or commodities, etc. The paper concludes with some 

suggestions for policy-makers to minimize the negative results. Yermack (2013) established 

the legitimacy of Bitcoins as a currency. The author disagrees that the bitcoins can be 

established as a bona fide currency; rather, they behave more like speculative instruments. 

The classical properties of a typical currency are:  

• It acts as a medium of exchange,  

• It acts as a unit of account, and  

• It acts as a store of value.  

Bitcoins appear to satisfy the first criterion, as an increasing number of online merchants 

have accepted them as a medium of payment; however, they fail to meet the other two 

criteria. The exchange rate volatility of Bitcoins is higher compared to the fluctuations in 

other currencies and reveals zero correlation with other currencies, which undermines its 

use as a unit of account and store of value. The market volatility of Bitcoins in 2013 was 133%, 

which is significantly higher than the volatility of other currencies, which typically falls 

between 8% and 12%. Gold exhibits a volatility of 22%, and even the riskiest stocks exhibit a 

volatility of 100%, which makes Bitcoin incompatible and risky for investors. Moreover, all 

the multinational companies that deal in multiple currencies endeavour to hedge themselves 

against the risk arising from the fluctuations of currencies. However, having a zero 

correlation with other currencies renders Bitcoins useless for risk management purposes. 

Ethereum has evolved as an alternative to Bitcoin among others in the cryptocurrency 

ecosystem, owing to its decentralized platform for smart contracts and decentralized 

applications (dApps). The valuation of Ethereum (ETH) is impacted by a convergence of 

technical, economic, and speculative elements that distinguish it from other cryptocurrencies 

like Bitcoin.  

Buterin (2013) presented Ethereum as a decentralized platform that transcends basic 

peer-to-peer cash transactions, allowing developers to construct programmable apps on the 

blockchain. This essential distinction has drawn a wider array of developers, investors, and 

organizations to Ethereum in contrast to Bitcoin. FLOW cryptocurrency was created by 

Dapper Labs, the firm responsible for the renowned Ethereum-based decentralized 

application, CryptoKitties. Launched in 2017, CryptoKitties illustrated the promise of 

blockchain-based digital assets while also revealing scalability challenges on Ethereum, 

especially during times of elevated user engagement. This resulted in network congestion 
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and elevated transaction costs, indicating that Ethereum’s infrastructure was challenged by 

the volume (Buterin, 2020). Dapper Labs developed Flow, a blockchain designed to address 

scalability challenges and enhance performance for gaming, decentralized apps (dApps), and 

non-fungible tokens (NFTs) (Dapper Labs, 2020). Originally the native cryptocurrency of the 

Ripple network, XRP is mainly aimed at providing remittance systems, currency exchange, 

and real-time gross settlement (Coutinho et. al., 2023). Ripple’s consensus algorithm, 

commonly known as the Ripple Protocol Consensus Algorithm (RPCA), is based on the Ripple 

Protocol Consensus Algorithm (RPCA). It enables faster transaction speeds and lower energy 

use (Schwartz et al., 2014). The Ripple network is more centralized than other distributed 

networks, as it requires a group of trustworthy validators to verify transactions (Hileman & 

Rauchs, 2017). Many financial institutions have also shown deep interest in this 

cryptocurrency due to its position as a bridge between fiat and other cryptocurrencies that 

facilitate cross-border payments (Davradakis, 2019). 

 

1.2. Cryptocurrency Forecasting  

Investments in Cryptocurrency have often seemed lucrative, but with a high probability of 

risk and uncertainty. Uncertainty dimensions such as unpredictability and dynamicity are 

seen as significant challenges for investors, financial analysts and policy-makers. The 

unpredictable and dynamic nature of cryptocurrency markets poses significant challenges 

for investors and financial analysts. Historically, traditional forecasting models have often 

struggled against these challenges due to rapid price fluctuations, rapidly shifting market 

dynamics, non-linear dependencies, and other common factors in digital asset trading. The 

emergence of deep learning tools in navigating these hidden layers of dependencies has led 

to better outcomes in terms of improved prediction accuracy and enhanced investment 

strategies. Researchers have often experimented by combining such deep learning tools to 

develop high-performing hybrid models aimed at reducing errors in price predictions and 

other similar domains. In short, a hybrid deep learning switching model offers a significantly 

improved strategy for adapting to market dynamics through the combination of multiple 

neural network architectures. Strengths of existing methods, such as Long Short-Term 

Memory (LSTM) networks for sequential data analysis, Gated Recurrent Units (GRUs) for 

efficient computation, Monte Carlo methods and Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) models for volatility forecasting and risk assessments, can be 

suitably shaped and converged into a hybrid deep learning switching model. 

The model is orchestrated to dynamically switch between alternative architectures to 

identify patterns, adapt to market volatility, and suggest financially implementable 

responsive alternatives for achieving financial goals. The integration of deep learning models, 

such as LSTM and GRU, with Monte Carlo simulation can create a suitable niche that 

incorporates dynamic stochastic elements relevant to cryptocurrency market behaviour. 

Consequently, this model serves as a penchant driving robustness and scalability that can 

transform traditional financial strategies into efficient cryptocurrency-driven investment 

strategies for improved decision-making in very complex cryptocurrency financial 

environments. 
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1.3. Definition 

• LSTM (Long Short-Term Memory): A type of recurrent neural network (RNN) 

designed to capture long-term dependencies in sequential data using memory cells 

that regulate information flow (Hochreiter & Schmidhuber, 1997). 

• GRU (Gated Recurrent Unit): A variant of RNN that simplifies LSTM by combining its 

cell state and hidden state into a single structure, reducing complexity while 

maintaining performance (Cho et al., 2014).  

• Monte Carlo Simulation: A computational technique that uses random sampling to 

estimate probabilities, model uncertainty, and generate potential outcomes in 

stochastic processes (Metropolis & Ulam, 1949). 

• GARCH (Generalized Autoregressive Conditional Heteroskedasticity): A statistical 

model designed to predict financial volatility by modeling time-varying variance in 

financial data, often capturing volatility clustering and leverage effects (Bollerslev, 

1986). 

 

2. Literature Review 

 

2.1. LSTM Architecture 

For a long time, Long Short-Term Memory (LSTM) networks and their hybrid variants have 

mainly focused on complex forecasting and prediction tasks across multiple domains. Studies 

by Sunny et al. (2020) and Wang et al. (2018) indicated the efficiency of two LSTM models, 

Bidirectional LSTM (Bi-LSTM) and optimized LSTM, in capturing sophisticated temporal 

dependencies and improving stock price prediction accuracy. LSTM networks, such as the 

CEEMDAN-LSTM model, can handle volatile financial data by controlling noise reduction and 

pattern extraction techniques to enhance stock index forecasting. The CEEMDAN-LSTM 

model can control noise reduction and pattern extraction techniques to enhance stock index 

forecasting, demonstrating the adaptability of LSTM networks in handling volatile financial 

data (Lin et al., 2021). These developments highlight the utility of LSTM models to generate 

precise and reliable predictions, enabling investors, analysts and policy-makers. 

Researchers also highlighted the combination of LSTM models with Convolutional Neural 

Networks (CNNs) and Autoregressive Integrated Moving Average (ARIMA) models, effectively 

combining spatial feature extraction with temporal dependency modelling, tackling the 

complexities of energy resource management forecasting accuracy in well production and gas 

fields (Zha et al., 2022, and Fan et al., 2021). Xu et al. (2022) proposed an ARIMA-LSTM hybrid, 

where linear and non-linear modelling experiments demonstrated the versatility of LSTM 

networks in addressing critical challenges in energy and environmental sectors, thus 

assisting as robust tools for resource planning and decision-making. In addition, LSTM 

networks showcased their flexibility in diverse data types and domains, particularly for 

natural language processing (NLP), sentiment analysis, and trajectory prediction. Dynamic 

environment analysis included an SS-LSTM model dealing with social and spatial 

dependencies for pedestrian trajectory prediction (Xue et al., 2018). 

For sentiment analysis, Wang et al. (2016) and Behera et al. (2021) employed CNN-LSTM 

hybrids to capture both spatial and temporal sentiment cues, thereby evaluating the 
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effectiveness of improving performance in fine-grained sentiment classification tasks. CNN-

LSTM models have also been observed to handle complex linguistic structures for metaphor 

detection (Wu et al., 2018). A comprehensive study by Al-Selwi et al. (2024) described the 

boundaries of deep learning coverage, which extends to autonomous driving, social media 

analysis, and NLP, offering attention mechanisms and genetic optimization that address 

innovative solutions to real-world challenges. 

 

2.2. GRU Architecture 

Domain studies related to time series analysis and market forecasting have achieved 

considerable success owing to models with Gated Recurrent Unit (GRU) based architecture. 

Notably, an optimized architecture, based on stacked bidirectional and LSTM and GRU 

models, has improved prediction accuracy, as indicated by the results from the work of 

Althelaya et al. (2018) and Gao et al. (2021). Multi-dimensional sequential pattern detection 

with higher precision was observed in GRU-based StockNet and CNN-LSTM, two new hybrid 

models, as indicated by the results from studies by Gupta et al. (2022) and Song and Choi 

(2023), respectively. Decomposition-based GRU Transformer model generated higher 

forecasting accuracy by effective isolation of key patterns in financial data (Li & Qian, 2022). 

Variational Mode Decomposition (VMD) with an Attention-enhanced GRU network, a model 

created by Niu and Xu (2020), was able to capture both short-term fluctuations and long-

term trends in stock price data. Niu and Xu (2020) introduced a hybrid model combining 

Variational Mode Decomposition (VMD) with an Attention-enhanced GRU network, 

demonstrating its ability to capture both short-term fluctuations and long-term trends in 

stock price data. Likewise, studies by Saha et al. (2021) and Zhang et al. (2023) indicate the 

complementary strengths of linear and non-linear modelling approaches for stock price and 

oil price forecasting, with the integration of ARIMA models with GRU models. Advancements 

in quality, as well as complementary GRU models, showcase higher precision and reliability 

in the delivery and application of deep learning approaches to financial forecasting. 

Beyond stock market prediction, GRU models witnessed more applications that included 

pandemic trend forecasting and sentiment analysis. Another examination of the multiple 

model performances of GRU, LSTM, ARIMA, and SARIMA models in predicting COVID-19 

trends highlighted the efficacy of deep learning models in capturing non-linear patterns 

(ArunKumar et al., 2022). A CNN-GRU hybrid model was proposed by Wu et al. (2024) to 

capture market sentiments, risk predictions and efficient alert systems in financial modelling. 

Furthermore, deep learning models were tested on grouped time-series data and revealed 

higher forecasting accuracy in financial markets (Lawi et al., 2022; Pirani et al., 2022). 

Therefore, studies on GRU-adapted models have proven to be efficient, thereby offering 

significant insights into adaptability and applicability in dynamic environments and cross-

domain studies, respectively. 

 

2.3. Monte Carlo Simulation 

Historically, Monte Carlo simulation has been considered a powerful tool for risk assessment, 

forecasting and decision-making across diverse areas, including financial markets. Two 

studies, by Alrabadi and Aljarayesh (2015) and Estember and Maraña (2016), respectively, 
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pointed to the efficiency of Monte Carlo simulations not only in modelling the stochastic 

nature of stock prices but also in apprehending market volatility and providing probabilistic 

forecasts of future returns. Multiple potential outcomes with risk assessments in dynamic 

financial environments stand out as the predominant characteristics of Monte Carlo methods 

(Xiang et al., 2021 and Siddiaui and PPatil, 2018). Together, these works illustrate the basic 

role of Monte Carlo simulation in improving forecasting accuracy and supporting strategic 

decision-making in finance.  

Beyond financial applications, Monte Carlo methods have been applied in traffic 

forecasting and emerging market analysis. Variable factors like peak hours and weather 

conditions for urban planning and traffic management were simulated with useful results to 

predict traffic speeds using Monte Carlo methods (Jeon & Hong, 2016). The mean-reverting 

behaviour of emerging MENA stock markets was also investigated using a Monte Carlo 

Simulation to draw insights for market stability and predictability (Neaime, 2015). Modelling 

complex, stochastic systems to generate probabilistic forecasts makes it a highly useful tool 

for addressing uncertainties in both financial areas. In the same context, stochastic volatility 

modelling and mean-field simulation were investigated to emphasize the versatility of 

advanced Monte Carlo techniques in capturing dynamic patterns and high-dimensional 

distributions (Raggi and Bordignon, 2006 and Del Moral, 2013). 

Comprehensive works on theoretical and practical advancements in Monte Carlo 

simulation, such as Mun (2006, 2010), McLeish (2011), and Brandimarte (2014), provide 

detailed frameworks for applications in financial engineering, risk management, and 

economic modelling. These studies are indicative of method applications, real options 

analysis, portfolio optimization, and ensemble machine learning models, as demonstrated by 

Deep (2024) and Mun and Housel (2010) integration of Monte Carlo simulation with other 

advanced methods. On the other hand, challenges such as its reliance on distributional 

assumptions and sensitivity to input parameters underline the need for careful validation and 

implementation (Nawrocki, 2001). Notwithstanding these challenges, the literature 

highlights the true potential of Monte Carlo simulation in addressing complex, uncertain 

systems, offering adaptable tools for forecasting, risk assessment, and strategic decision-

making across various applications for investors and analysts. 

 

2.4. GARCH Model  

GARCH (Generalized Autoregressive Conditional Heteroskedasticity) models are well-known 

for forecasting stock market volatility, for capturing volatility clustering, leverage effects, and 

asymmetric market behaviours. The effectiveness of variants of GARCH models, such as Non-

linear variants like EGARCH and GJR-GARCH, was demonstrated for sudden market shocks 

and asymmetric patterns and performed well beyond expectations in comparison to their 

linear counterparts in capturing the dynamic nature of financial markets (Franses & Van Dijk, 

1996; Chong et al., 1999). Similarly, Marcucci (2005) presented regime-switching GARCH 

models that adapt to structural changes in market conditions, enhancing forecasting for risk 

management, portfolio optimization, and financial decision-making. Diverse market 

conditions in both developed and emerging markets were studied using adaptable GARCH 

models. Shanghai Stock Exchange (SSE) and Bombay Stock Exchange (BSE), respectively, 
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were investigated using EGARCH and TGARCH for capturing volatility dynamics (Lin, 2018; 

Srinivasan & Ibrahim, 2010). In extension, emerging markets, such as Ghana and Turkey, 

were effectively explored using non-linear GARCH models to address the unique volatility 

patterns and leverage outcomes prevalent in such regions (Gokcan, 2000; Frimpong & Oteng-

Abayie, 2006). 

Furthermore, the realized GARCH model explored high-frequency data to enhance 

forecasting accuracy, in addition to the existing innovations in GARCH methodologies. 

Focusing on hybrid approaches and integration with machine learning techniques has 

constituted recent advancements in GARCH modelling (Sharma, 2016). The strengths of 

GARCH with Long Short-Term Memory (LSTM) networks were utilized for predicting stock 

price index volatility, by combined hybrid model (Kim & Won, 2018). Another hybrid model 

by Monfared and Enke (2014), GJR-GARCH with neural networks, highlighted the efficacy in 

capturing non-linear patterns, resulting in improved volatility forecasts. Similarly, work by 

Babu and Reddy (2015) and Laurent et al. (2012) further expanded the scope of GARCH 

applications, combining with ARIMA and multivariate frameworks, respectively, to address 

linear trends and dynamic correlation structures. Such novel studies together underline the 

prospects of hybrid GARCH models and their evolving contribution in financial forecasting, 

contributing robust tools for risk assessment, investment strategies, and decision-making in 

progressively multifaceted and interrelated markets. Alternatively, these studies also 

highlight the importance of modifying GARCH models to account for specific market 

characteristics, providing valuable insights for investors and policy-makers navigating 

volatile and rapidly changing financial environments. 

While LSTM, GRU, Monte Carlo simulation, and GARCH models have shown considerable 

promise in forecasting and risk assessment, several gaps remain. LSTM and GRU models lack 

sufficient research on interpretability, scalability, and performance under extreme events. 

Monte Carlo methods face challenges in computational efficiency and integration with 

machine learning techniques. GARCH models require further exploration in multi-asset 

forecasting, non-financial domains, and real-time applications. Addressing these gaps 

through hybrid models can improve accuracy, robustness, and applicability across diverse 

markets and conditions. 

The study intends to achieve objectives such as:  

• To develop a hybrid forecasting model integrating LSTM, GRU, Monte Carlo 

simulation, and GARCH models for improved predictive accuracy. 

• To evaluate the computational efficiency and scalability of the hybrid model for high-

frequency trading and dynamic risk management. 

• To enhance model interpretability through explainable AI techniques for regulatory 

and risk management purposes. 

• To test the hybrid model’s adaptability in emerging markets, extreme financial 

conditions, and non-financial domains. 

Related hypotheses of the study include: 

• H11: The hybrid LSTM-GRU-Monte Carlo-GARCH model will outperform individual 

models in forecasting accuracy. 
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• H12: The hybrid model will demonstrate improved robustness to structural breaks 

and extreme market events compared to traditional models. 

• H13: The hybrid model will exhibit superior computational efficiency in real-time 

forecasting scenarios. 

• H14: The hybrid model’s explainability features will enhance stakeholder confidence 

and improve adoption in regulated industries. 

 

3. Research Methods 

The historical data was collected from Yfinance between the range of 01-04-2015 and 31-03-

2025 (3634 days) using Python 3.0 on the Google Colab platform. The data was normalized 

for better LSTM, GRU, Monte Carlo Simulation and GARCH model training and forecasting. 

The process of developing a robust stock price forecasting system involves several key 

steps. First, data preparation is essential, where historical stock price data is collected using 

the Yfinance library. The raw data was normalized and first-order differencing produced 

differences in normalized data for model-based analysis. To enhance the performance of the 

Long Short-Term Memory (LSTM) model, the data is normalized to ensure stable learning. In 

the next step, an LSTM model is designed to predict future stock prices, and this model is 

trained using the prepared historical data. Following this, a Monte Carlo simulation is 

employed to generate multiple possible future price paths by introducing randomness into 

the LSTM model’s predictions through noise injection, which accounts for uncertainty. Lastly, 

in the visualization and analysis phase, the predicted price paths are plotted, and key financial 

metrics such as the mean, percentiles, and Value at Risk (VaR) are calculated to assess the 

model’s performance and risk implications. This structured approach combines deep 

learning with stochastic modelling to improve the accuracy and reliability of financial 

forecasting. 

 

4. Data Analysis & Findings 

 

4.1. Normalization and Differencing 

Initial tests after normalization of data resulted in Ljung-Box Test (for Autocorrelation) = 

35683.672463. After first order differencing, the new differenced series became stationary 

with ADF Statistic: -8.757488, p-value (0.00 < 0.05) with no unit root and stable mean 

variance. 
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4.2. Descriptive Statistics 

 

BTC Close High Low Open Volume Normalized and 

Differencing of 

First Order 

count 3634 3634 3634 3634 3634 3633 

mean 22114.12 22584.33 21573.24 22092.63 2.02E+10 0.0002167 

std 24377.56 24880.17 23806.44 24360.97 2.09E+10 0.009687 

min 210.495 223.833 199.567 210.068 10600900 -0.0772419 

25% 3653.855 3699.571 3609.562 3650.94 2.04E+09 -0.0012735 

50% 10324.91 10508.12 10082.45 10321.69 1.66E+10 1.75E-05 

75% 35997.64 37244.26 34756.07 35894.92 3.12E+10 0.0016254 

max 106146.3 109114.9 105291.7 106147.3 3.51E+11 0.0776631 

Table 1: Descriptive Statistics for Raw BTC Data 

Source: Author’s 

 

 The table for descriptive statistics (Table 1) indicates that Bitcoin’s historical price and 

volume statistics reveal significant volatility, with 3,634 observations, an average closing 

price of approximately $22,114, and a wide standard deviation of $24,378, demonstrating 

substantial price fluctuations. The range of closing price fluctuations varied between $210.50 

and a dramatic rise to $106,146, with a central tendency of median closing price at $10,324, 

with signs of Bitcoin’s growth occurring in the latter part of the dataset. The signs of growth 

were further strengthened by the 25th percentile value at $3,654 and the 75th percentile 

value at $35,998. Average volumes of $20.2 billion spiked to $351 billion, highlighting periods 

of Intensive market activity. Considering the speculative nature of Bitcoin investments and 

the sharp fluctuations in market swings, the data is deemed suitable for advanced volatility 

modelling techniques, such as GARCH or Monte Carlo simulations, for risk assessment. For 

Normalized and differencing of first order, the bounded range for Values fall between ±0.077, 

implying stable transformations for modeling (See Figure 1). 

 

 
Figure 1: Comparative Chart for Original and Normalized Data on BTC Data 

Source: Author’s 
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4.3. GRU Results 

 

 
Figure 2: GRU Results on BTC Data 

Source: Author’s 

 

The provided visualizations illustrate the performance and predictive behaviour of a GRU 

model for Bitcoin price forecasting. Both training and prediction performance of the GRU 

model are demonstrated through two plots, while the left panel indicates training loss over 

100 epochs, with low magnitude loss (~6.0e-5), and noticeable fluctuations suggesting the 

model’s fitness for training data with limited convergence stability. Likewise, the right panel 

depicts a comparison between predicted values (orange line) and actual differenced values 

(blue line) for a selected feature. This is indicative of the difficulty of the GRU model to capture 

dynamic patterns due to underfitting or inadequate learning of sequential dependencies, 

thereby implying non-generalization capability on volatile time series (See Figure 2). 

 

4.4. LSTM Results 

 

 
Figure 3: LSTM Results on BTC Data 

Source: Author’s 

 

A Deep learning model, the LSTM model, was trained on BTC data to identify both stochastic 

and deterministic projections. The performance of the LSTM model is assessed using training 

loss and prediction accuracy visualizations (See Figure 3). A reasonably stable and effective 

fitting process is indicated by the model’s training loss over 100 epochs, showing consistently 

low values (~6.0e-5) and moderate oscillations (left panel). On the contrary, the LSTM’s 

predicted differenced values (orange line) with the actual differenced series (blue line) 

capture the mean level of the series, ignoring the amplitude and directional shifts of the actual 
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data during peak volatility times (right panel). This implies that LSTM can learn the central 

tendency of the data but may not capture the temporal dynamics and sharp fluctuations, 

thereby limiting its effectiveness in high-variance forecasting contexts. In the later stage, the 

GARCH model was integrated to study volatility dynamics (See Figure 3). 

 

4.5. Monte Carlo Simulation Results  

 

 
Figure 4: Monte Carlo Results on BTC Data 

Source: Author’s 

 

Simulated future price paths were achieved across a 30-day horizon using Monte Carlo 

simulation, with the red dashed line at $50,000 representing the initial base price or 

reference point. The Monte Carlo simulation results for the differenced time series data of 

Feature 1 are depicted through the ensemble forecast and distribution plots. 

Multiple simulated paths, including the mean forecast trajectory across 100 steps (red 

line), indicate a gradual mean upward drift, indicating a slight positive expectation for the 

differenced values over time. The increase in dispersion of the simulated paths with forecast 

horizons highlights growing uncertainty (left panel). The final simulated difference values 

distribution is moderately skewed, representing a unimodal, near-normal shape centred 

around zero, indicating a non-trivial probability of extreme values, emphasizing the 

stochastic nature of future projections and the significance of including probabilistic 

forecasting in high-volatility time series analysis (See figure 4). 

 

4.6. GARCH Model Results  

 

 
Figure 5: GARCH Model on BTC Data 
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Source: Author’s 

 

 The GARCH model visualization for Bitcoin’s volatility forecast presents a simulated 

BTC price series with approximately 500 data points before the forecast initiation. The 

GARCH (1,1) forecasting results presented offer insights into both the expected value and 

conditional variance of the differenced financial time series data. The GARCH model 

visualization for Bitcoin’s volatility forecast presents a simulated BTC price series with 

approximately 500 data points before the forecast initiation. The GARCH (1,1) forecast 

results presented offer insights into both the expected value and conditional variance of the 

differenced financial time series data. The left panel shows the past-differenced values along 

with the GARCH model’s predicted average, including a 95% confidence range. This suggests 

that the model expects the average to stay mostly stable in the future, although the 

uncertainty increases over time. The right panel suggests a model expectancy for market 

stability, with less expected large-scale changes, as indicated by steadily decreasing 

forecasted volatility. These results highlight the effectiveness of the GARCH model in 

capturing dynamic volatility, forecasting better results with different confidence levels, 

which is significant for financial risk management (See Figure 5). 

 

5. Interpretation 

 

5.1. Inferences 

 
Model Key Results Inferences Limitations 

GRU - Training loss: ~6.0e-5 (low but 
fluctuating). 

- Captures basic patterns but 
struggles with dynamic volatility. 

- Poor generalization on 
volatile data. 

- Predictions are static, failing to 
track actual volatility. 

- Potential underfitting or 
inadequate sequential learning. 

- Limited directional 
accuracy. 

LSTM - Training loss: ~6.0e-5 (stable). - Learns central tendency but not 
extreme fluctuations. 

- Underrepresents high-
variance periods. 

- Predictions matches mean but 
miss amplitude/directional 

shifts. 

- Better stability than GRU. - Limited volatility 
forecasting. 

Monte 
Carlo 

Simulation 

- 30-day horizon simulations 
show upward drift with 
increasing dispersion. 

- Suggests positive drift but high 
uncertainty. 

- Assumes normality; 
may underestimate tail 

risks. 

- Final distribution: near-
normal, centered at zero. 

- Probabilistic forecasts account for 
extreme outcomes. 

- Sensitive to input 
parameters. 

GARCH 
(1,1) 

- Narrow forecast band (stable 
mean). 

- Captures volatility clustering. 
 

- Declining conditional volatility 
trend. 

- Effective for risk-sensitive 
forecasts. 

Table 2:  Interpretation of Results 

Source: Author’s 

 

 The GRU model achieves a low training loss (~6.0e-5). However, its static prediction 

behaviour suggests an inability to capture underlying dependencies in volatility patterns—

possibly due to underfitting or limited learning capacity—especially when compared to the 

LSTM model, which better captures central tendencies. The LSTM model can be considered 

an apt model for training stability and comparable loss control during the training phase, 
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provided its inability to estimate extreme variations can be minimized. Complementing these 

models, the Monte Carlo simulation delivers a probabilistic outlook, presenting a positive 

drift and widening uncertainty over time; however, its reliance on normality assumptions 

may understate tail risk. On the contrary, results of the GARCH (1,1) model suggest enhanced 

ability for forecasting volatility on account of stable mean predictions and volatility clustering 

achieved through declining conditional variance forecast. Nevertheless, its symmetric 

response to volatility shocks and limited capacity for modelling mean dynamics expose the 

trade-off between interpretability and adaptability. These observations collectively suggest 

the value of hybrid frameworks that integrate the pattern-recognition strengths of deep 

learning with the robust statistical foundations of GARCH models to enhance forecasting 

accuracy in non-stationary and high-volatility financial environments (See Table 2). 

 

5.2. Structural Equation Model 

 

 
Figure 6: Structure Equation Modeling for BTC 

Source: Author’s 
Tool used: SEM diagram, https://semdiag.psychstat.org/, Mai, Yet. Al., 2023) 

     

5.2.1. Latent Variables 

Influenced by both the GRU Model and LSTM Model (rectangle node), representing projected 

price patterns in response to past data trends. The GARCH Model (rectangle node) indicates 

expected volatility fluctuations. The Monte Carlo Simulation (rectangle node) played a crucial 

role in influencing volatility patterns and risk assessment, ultimately leading to potential 

market outcomes (See Figure 6). 

 

5.2.2. Price Trends 

Price trends (oval node) were demonstrated using the GRU Model and the LSTM models. The 

GRU model indicated a price decline from 100,000 to 50,000. The GRU model predicts a 

substantial drop in BTC prices over the forecast period. The GRU model depicts complex price 

patterns with some restrictions on overfitting historical data. On the contrary, the LSTM 

model predicts a price decline from 75,000 to 50,000. This exhibits a much smoother forecast 
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pattern, revealing that the LSTM model effectively describes time-based dependencies with 

unexpected volatility (See Figure 6). 

 

5.2.3. Volatility Patterns   

The missing volatility patterns (oval node) in the price trends were identified using the 

GARCH model (rectangle node). The GARCH model highlights price volatility in the range of $ 

38,000 to $ 62,000. This showcased the model's strength in not only discovering volatility 

clusters but also enabling smooth price fluctuations (See Figure 6). 

 

5.2.4. Risk Assessment 

Risk metrics, such as the Sharpe Ratio and Maximum Drawdown, were used to simulate noise 

in the existing Model, and stabilization was identified at nearly $50,000. This simulation 

effectively models realistic market noise, making it valuable for evaluating risk factors (See 

Figure 6). 

 

5.2.5. Combined Impact  

Substantial market corrections were indicated, as both GRU and LSTM models showed 

significant price declines. Volatile market conditions, characterized by price swings within 

the range of 38,000 and 62,000, as indicated by the GARCH Model, are highlighted by 

stabilization around 50,000, as shown by the Monte Carlo simulation. Merging the GARCH 

Model and Monte Carlo Simulation provides an overview of volatility risks and BTC price 

trends within realistic market scenarios, thereby enhancing the robustness of investment 

decisions and risk management strategies (See Figure 6). 

 

6. Discussion 

The proposed model structure equation model (Figure 4) reasserts the response of different 

models with respect to price trends, volatility patterns, and risk assessment, supporting the 

hypotheses in numerous ways: 

• H11: Improved Forecasting Accuracy 

LSTM model and GRU model clearly exhibit similar trends in price decline from (75,000 to 

50,000) and (100,000 to 50,000), respectively. The GARCH Model effectively detects volatility 

patterns (38,000 to 62,000), indicating its ability to capture complex fluctuations. Monte 

Carlo Simulation stabilizes the mean near 50,000, ensuring consistency in forecasts. 

Therefore, the combination of these models utilizes their individual strengths, enhancing the 

hybrid model's predictive accuracy by merging not only temporal dependencies, but also 

volatility clustering, and probabilistic estimations. 

• H12: Robustness to Structural Breaks and Extreme Market Events 

A diversified approach of a hybrid model assisted in dealing with different aspects of financial 

data (e.g., price trends, volatility patterns, and risk assessment), which were dealt with by 

different models. This model proves to be robust in accommodating unexpected market shifts 

and extreme market situations. Monte Carlo Simulation in the hybrid model can handle 

uncertainty and randomness. (Figure 4) 

• H13: Superior Computational Efficiency 

30



31 
 

Redundant computations are easily handled by the contributions of different models, 

enabling switching between models more easily, depending on data behaviour, and further 

ensuring efficient resource utilization in real-time forecasting. 

• H14: Enhanced Explainability for Stakeholder Confidence 

Price Trends, Volatility Patterns, and Risk Assessments are based on insights from the 

contributing models that underline transparent and interpretable outcomes. In high-risk 

financial scenarios, dependency on strong logical predictions can be attributed to the well-

designed framework of this hybrid model.  

 

7. Conclusion 

The proposed hypothesis (H14) is robustly validated by the experiment utilizing BTC data 

through a hybrid model configuration (LSTM, GRU, GARCH, and Monte Carlo simulations), 

highlighting superior accuracy, resilience, increased efficiency, and greater explainability 

achieved for diverse marketing situations. Possible insights from the findings and discussion 

lead to the conclusion that the development of robust risk management strategies, involving 

forecast market corrections with volatility models, enhances informed decision-making 

across sectors. 

The experiment using BTC data via a hybrid model configuration (LSTM, GRU, GARCH, 

and Monte Carlo simulations) strongly validates the proposed hypothesis (H4), thereby 

demonstrating better accuracy, resilience, higher efficiency, and increased explainability in 

various possible marketing scenarios. Possible insights from the results and debate point to 

the conclusion that the evolution of strong risk management techniques involves predictable 

market corrections, with improved volatility models enhancing informed decision-making 

across industries. 

 

7.1. Implications of the Results 

 

7.1.1. Economic Implications 

Insights from the research can assist investors, regulators, and policymakers in potential 

crypto market corrections where speculative bubbles might often lead to price crashes. 

Although Cryptocurrency (BTC) can be treated as a potential hedge to mitigate inflationary 

effects in some economies, sudden devaluation risks can exist in the form of existing volatility 

(ranging from $38,000 to $62,000). Central banks in growing economies can incorporate such 

digital assets in their monetary policies. The findings highlight Bitcoin's potential role in 

portfolio diversification, thereby facilitating institutional investors to achieve risk-adjusted 

returns. 

 

7.1.2. Business Implications 

Financial Institutions can not only design new hedging strategies but also improve exposure 

control by leveraging collective insights drawn from the GARCH model and Monte Carlo 

simulation on BTC data. BTC-backed financial instruments or investment strategies can be 

constructed based on stabilization trends around $50,000, as observed and highlighted by 

$50,000 shown in the Monte Carlo simulation. Businesses employing automated trading 
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systems can use volatility insights to enhance algorithms, improving timing strategies for 

entry and exit points during high-risk periods. Growing trends indicate that to reduce the risk 

of revenue loss, future BTC payments may factor in predicted volatility patterns to adapt 

pricing strategies. 

 

7.1.3. Social Implications 

The identified sharp price fluctuations may discourage retail investors, especially those 

driven by speculative motives. Improved risk assessment models can help improve 

confidence in BTC investments. Higher speculative interests among potential investors may 

be generated by accommodating improved risk assessment models. Concerns about wealth 

inequality persist, as extreme volatility may disproportionately impact small-scale investors 

compared to institutional players in the crypto market. Safer market conditions can lead to 

stricter guidelines for BTC-related financial products, resulting from the clear identification 

of volatility risks prompted by the combination of GARCH and Monte Carlo models. 
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